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Some applications of the Mohr diagram for three-dimensional strain 
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Abstract--The Mohr diagram for strain is rarely used in its full form, as a representation of three-dimensional 
strain. Recent attention has focused on various uses of the Mohr circle to express two-dimensional strain tensors. 
This contribution redescribes the Mohr diagram for three-dimensional strain and illustrates some new appli- 
cations. The Mohr diagram for any strain ellipsoid provides an immediate method for ellipsoid shape classifi- 
cation. However, its greatest new potential is considered to be in the representation of strain ellipses as sections 
of ellipsoids. 

Any plane section of a strain ellipsoid can be plotted on the ellipsoid's Mohr diagram: it is here called a 'Mohr 
locus' because it is constructed as a locus of points representing the sheaf of lines which can be considered to define 
the plane. Mohr loci for sectional ellipses have a variety of forms, according to their orientation in the strain 
ellipsoid. Generally oblique sections are represented by loops bounded by the three principal circles. Their most 
leftward and rightward points are the plane's principal axes. Any Mohr locus can be transformed into a Mohr 
circle for the sectional ellipse. 

Mohr diagrams with Mohr loci have considerable potential as a graphical method of deriving best-fit strain 
ellipsoids from natural strain data. This is illustrated in three examples. 

THE MOHR DIAGRAM--HISTORICAL 
BACKGROUND 

THE TERM Mohr diagram is used to encompass a family of 
graphical representations, either of stress or strain, 
which are characterized by circles, known as Mohr 
circles. The Mohr diagram for stress is most commonly 
used in the study of fracture, in which a Mohr envelope is 
constructed from successive Mohr circles at points of 
failure. In strain studies, a single Mohr circle is some- 
times labelled a Mohr diagram: such circles may be used 
to illustrate two-dimensional strain tensors or as a practi- 
cal method of strain determination. In modern structural 
geology, the Mohr diagram is restricted almost exclu- 
sively to two-dimensional analyses, either of stress or 
strain. This was not the case for the original Mohr 
diagram. 

Mohr's original diagram (1882) was a representation 
of normal versus shear stress (tr, r) for three-dimensional 
stress (Fig. 1). The diagram shows three principal stress 
circles (XY, YZ, XZ)  and a method of plotting or, r for 
any plane in terms of angles of its pole to X and Z. The 
convention for measuring single angles is shown in Fig. 
l(a), and double angles (the more usual present-day 
convention) in Fig. l(b). Mohr's application of this 
diagram was mainly directed to practical mechanics and 
the representation of failure by means of the now well- 
known failure envelope (1882, 1900, 1905). 

Nadai's (1931) textbook was probably the first expla- 
nation of Mohr's work in English. In a fuller account, 
Nadai (1950, chap. 10) described Molar's representation 
of a state of stress as "Mohr's stress plane or, r" because 
the three-dimensional variation of cr and r is represented 
in a plane. 

Nadai (1950, pp. 124-130) first aoplied Mohr's stress 

representation to strain. Two graphs were introduced 
for quadratic elongation vs shear strain (Fig. 2). The 
diagram of h vs y (Nadai called 3' unit shear), with angles 
measured in their unstrained state, is illustrated in Fig. 
2(a). The three principal planes of the strain ellipsoid are 
represented by principal ellipses analogous to the circles 
in the stress diagram. However, Nadai recognized that a 
graph of reciprocal quadratic elongation A' vs 7' (Y' = 
y/A), in terms of angles in the strained state, is identical 
in form with the Mohr stress diagram: the three principal 
planes of the strain ellipsoid are represented by three 
principal Mohr circles (Fig. 2b). The strain state for any 
other direction falls in the region bounded by the three 
circles. 

It was probably Brace (1961) who first used the expres- 
sion "Mohr diagram" in the geological literature for the 
representation of three-dimensional finite strain. He 
emphasized the distinctions between the two types of 
diagram (unstrained, Fig. 2a; strained, Fig. 2b) and 
examined their practical uses in structural geology. 
Ramsay (1967) expanded the usage of the Mohr diagram 
for strain in two ways. Firstly (1967, pp. 69-81) he 
illustrated the potential of Mohr circles for determining 
strain ellipses for particular sets of two-dimensional 
strain data. Secondly (1967, pp. 149-158) he illustrated 
how the diagram for three-dimensional reciprocal strain 
sensu Nadai might be used to compute strain. For five 
ellipsoid examples, Ramsay (fig. 4.21) thus derived 
strain contours which were represented on stereographic 
projections. 

Despite the potential illustrated by Ramsay, Mohr 
diagrams for three-dimensional strain are not widely 
used. As a means of representing two-dimensional strain 
or deformation tensors, Mohr circles have enjoyed a 
recent surge of interest, however. For example, there 
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Fig. 1. Mohr's original (~, z) diagram, (a) in single-angle form (Mohr 
1905, abb. 9) and (b) in double-angle form (op.  cir., abb. 20). 

are off-axis Mohr circles for asymmetric second-order 
tensors (Means 1982, 1983, De Paor 1983, De Paor & 
Means 1984), poles to Mohr circles (Cutler & Elliott 
1983, Allison 1984) and Mohr circles used to represent 
strain refraction (Means 1983, Treagus 1983). The fol- 
lowing account returns to the Mohr diagram as a rep- 
resentation of three-dimensional strain and investigates 
some new applications in structural geology. 

THE MOHR DIAGRAM FOR THREE- 
DIMENSIONAL STRAIN 

The term Mohr diagram will be applied to the Mohr- 
Nadai representation of A' vs 3" in three dimensions. 
Two-dimensional representations will be called Mohr 
circles. In practice, it is more convenient to represent 

Y unit 
shear 

(a) A 
~A elongation 

~3 

(b) 

A' 

Fig. 2. The Nadai-Mohr type diagrams for strain (a) The elongation vs 
unit shear diagram, after Nadai (1950, fig. 12.9). (b) The reciprocal 

strain diagram (after Nadai 1950, fig. 12.10). 

three-dimensional strain states on a half Mohr diagram 
with three principal semi-circles (e.g. Nadai 1950, Jaeger 
1956, Ramsay 1967), thus representing the value, but 
not the sign, of 3". 

A particular strain ellipsoid is represented by a three- 
circle Mohr diagram such as Fig. 2(b), on which the 
strain for any line occupies the field bounded by the 
three circles. Any line (L) is located stereographically in 
the manner shown in Fig. 3(a), by angles ~bt, ~ and ~b3 to 
A{, Aj and Aj, respectively. Three circular arcs are then 
drawn on the Mohr diagram; the oh1 arc is concentric with 
the AjAj circle, ~ with A]Aj and ~b3 with A{Aj (Fig. 3b). 
The intersection of the three arcs defines L in Mohr 
space. Three angles ensure accuracy, but only two are 
necessary as shown in Mohr's original diagrams (Fig. 1) 
and in Fig. 3(b). For a fuller explanation of the construc- 
tion, see Ramsay (1967, pp. 147-153). 

Mohr diagrams are a useful means of illustrating and 
classifying strain ellipsoids of different types. The 
relationship of the ~max tangents to the three principal 
circles allows ellipsoids to be assigned to one of Ramsay's 
five equal-volume ellipsoid types (1967, pp. 154-158), 
by immediate inspection (Fig. 4). Using the popular 
k factor (Flinn 1962), where (in terms of A) k = 
[(A1/A2) 1/2 - 1 ] / [ ( A 2 / A 3 )  1/2 - 1], the  k = 1 (plane strain, 
type 3) ellipsoids are immediately distinguishable 

(a) V' (b) 
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Fig. 3. The plotting of a point, L, on the Mohr diagram. (a) Quarter Lambert stereographic projection, illustrating angles 
~bl, ~ and ~ of L to A~, Aj and Aj, respectively. (b) The three ~ circular arcs which locate L and its coordinates A~_, 7~_. 

L may be positioned from ~1 and ~ ,  only; note their single- and double-angle definitions. ~L is the angular shear for L. 



Mohr diagram for three-dimensional strain 821 

y' 

/ 
/ j 

(a) k = O  ( t y p e  1 ) 
. / ( 2 3 )  / 

A ' I=A '2  l '  3 
A' 

(b) l > k > O  (type 2) 
~ ' ( 2 3 )  ~ (121  

A'~ A'~ A'~ 

(c) k = l  (type 3) 

(2a) 

A'I A'2 A'3 

(d) l < k < o o  (type 4) 

( 2 3 )  

A'~ A'= A'3 

(e) k=oo (type 5) ¥' 

A'I A'a=A'a 

Fig. 4. Strain ellipsoid classification on the Mohr diagram. (a)-(e) are 
Ramsay's (1967) five ellipsoid types with k values as indicated, The 
qJm,x tangents to the h'lh~ and hihl circles are shown by solid and broken 
lines, labelled (12) and (23), respectively. The relative disposition of 
these tangents allows immediate classification of any ellipsoid on a 

Mohr diagram. 

(Fig. 4c): their h~h~ and h~h~ circles share the same ~max 
line. The two end-member ellipsoids, true prolate 
(k = oo) and true oblate (k = 0) are represented on the 
Mohr diagram by a single Mohr circle (Figs. 4a & e): in 
each case, one principal circle reduces to a point and the 
other two are identical. The intensity of strain for each k 
class is represented by the different relative positions 
of A{,A~ and A~, given that A[. A~. A~ = 1. 

~ o ,// L 

(a) (b) 
Fig. 5. Angular shear in three-dimensional strain. (a) The undeformed 
state represented as a sphere, with line Lo as a radius and T O its 
perpendicular tangent plane. (b) In the deformed state the sphere 
becomes an ellipsoid, line Lo deforms to L, and To to ellipsoid tangent 

plane T, with pole P. Angular shear 0for L is ZPL. 

Shear strain 

The main distinction between the 2D and 3D Mohr 
diagrams is in the definition of shear strain, y'. A Mohr 
circle represents the component of shear strain for a 
particular line, measured in a defined plane (the plane of 
the strain ellipse represented by the circle). On the 3D 
Mohr diagram the total shear strain is recorded. 

In three-dimensional strain, the shear angle 0 for any 
line (e.g. L in Fig. 3) is defined as the angle between L 
and the pole to the deformed plane which was initially 
perpendicular to L (i.e. before deformation). It is most 
simply illustrated by considering the change from a 
sphere to an ellipsoid (Fig. 5). The line L is a deformed 
radius of the sphere, and the plane normal to L before 
strain (the tangent plane to the sphere), deforms to be 
the tangent plane to the ellipsoid. Thus qJ is the angle 
between the radius L and the pole to its tangent plane, P 
(Fig. 5), (Ramsay 1967 p. 128). For any direction (e.g. L 
in Fig. 3), ~0 is measured simply on the Mohr diagram but 
its direction is not represented. Methods for determining 
the direction of 0 will be given in the following sections. 
These methods are not exactly equivalent to construc- 
tions for determining the direction of shear stress (e.g. 
Zizicas 1955, Jaeger & Cook 1969 p. 30, Johnson & 
Mellor 1973, p. 52) but share the same principle of 
resolving shear stress/strain into components. 

The following analysis investigates the relationship 
between two-dimensional and three-dimensional strain, 
on the Mohr diagram. Mohr diagrams and Mohr circles 
will be used in conjunction, to represent sectional-ellipse 
planes of strain ellipsoids. 

THE MOHR DIAGRAM TO REPRESENT 
SECTIONAL ELLIPSES --MOHR LOCI 

The Mohr diagram represents lines in the strain ellip- 
soids by points, falling in the field bounded by the three 
principal-plane circles. Any plane section through a 
strain ellipsoid may thus be mapped by a series of points 
which represent a sheaf of lines in the plane. The con- 
figuration of points which defines any sectional-ellipse 
plane is here called a Mohr locus. Mohr loci have a 
variety of forms according to their orientation in the 
ellipsoid. 

Three special Mohr loci are immediately obvious on 
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Fig. 6. The three forms of two-dimensionally oblique sectional ellipses on a Mohr diagram. The ellipse planes are 
represented stereographically on the right. In each, the ellipsoid principal planes are represented by solid lines, and 
sectional ellipse planes at 15 ° intervals by broken lines (circular arcs). (a) Planes parallel to 3.1, (b) parallel to 3. 2 and 

(c) parallel to A 3. 

any Mohr diagram: these are the Mohr circles which 
represent the three principal planes of the ellipsoid. 
Sectional ellipses which contain one principal axis (two- 
dimensionally oblique) are also represented by circular 
arcs (Fig. 6). They are partial circles which meet in a 
point representing their common principal axis. A 
special Mohr locus of this type is the circular section or 
circular plane of the ellipsoid. For any ellipsoid, this is 
represented by the A~ ordinate (i.e. A' = A~) so, strictly, 
it is a partial circular arc of infinite radius (Fig. 7). In 
plane-strain ellipsoids (k = 1) (Fig. 7a) the circular- 
section locus represents the locus of lines of no finite 
longitudinal strain (n.f.l.s.): in all other cases (k ¢ 1, 
Fig. 7b), the two loci do not coincide and the locus of 
n.f.l.s, represents a surface, not a plane (cf. Ramsay 
1967, figs. 4.21 & 4.22). 

The attitude of the circular section to A{ (angle 0) is 
determined by simple measurement on the Mohr dia- 
gram (Fig. 7) in either single or double-angle form. This 
is of practical use in the Biot-Fresnel construction (Gay 
1967, p. 216). Moreover, it can be demonstrated from 
simple trigonometry in Fig. 7 that cos 2 0 = (A~ - A~)/ 
(A~ - A~), and thus tan 2 0 = (A~ - A~)/(A~ - A~); see 
Flinn (1962), noting a difference in nomenclature. 
Flinn's 2V angle is supplementary to 20 in Fig. 7. 

y' 

(a) 

O s e c ~  A' 
A' 1 A' 2 A' 3 
0~5 ~ - ~ - -  1.0 1.5 210 

(b) 

0 s ~  A' 

k'~ A'2 k'3 

Fig. 7. The relationship of ellipsoid circular sections and surfaces of no 
finite longitudinal strain (n.f.l.s.). (a) In plane strain (k = 1 = A2) the 
two surfaces are the same; (b) in other cases (k ¢: 1) they are different. 
e is the angle of the two circular sections to 3.1, in single or double angle 
form, as used in the Biot-Fresnel construction. The 2V angle is also 

shown. 
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Fig. 8, Examples of the variation in shape of sectional ellipse loci. (a) Four three-dimensionally oblique sectional ellipse 
planes, in stereographic projection. (b) The Mohr loci for the four planes in (a). Note that each locus touches each principal 

circle once. 

Mohr loci which represent section planes oblique to 
the three principal axes (3D-oblique) are not rep- 
resented by circles or partial circles. They are closed 
forms of various shapes (oval, banana, etc.) according to 
their orientation in the ellipsoid (Fig. 8). Each Mohr 
locus touches the three principal circles once, where the 

sectional-ellipse plane intersects the principal planes in 
real space (A, B, C in Fig. 9). The exact shape of any 
locus is determined by careful plotting of a series of lines. 
The locus cannot be predicted (without algebra), but in 
practice it has proved possible to construct loci from an 
economical use of lines. 

(a) 

A'I k'= A' 3 

Cb, 

! / ! , ,  

(c) 

(d) 

c 

k'l A'2 k'3 

C 
YT ~- . . . . . .  i .  
or, /Q~ , 

VII / /  • II~P2 
i I I  ~ i 

B : 

Fig. 9. Method of plotting sectional ellipses on the Mohr diagram for a known strain ellipsoid. A full explanation is given in 
the following text. 
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An economical method of  Mohr-locus construction: 
Fig. 9 

For a particular oblique section in the strain ellipsoid, 
a method is presented for its Mohr construction, to be 
read in conjunction with Fig. 9. It is assumed that the 
strain ellipsoid has a known axial ratio. 

(a) Draw a three-circle Mohr diagram for the strain 
ellipsoid at an appropriate scale. Measure 0 for the 
circular sections (cf. Fig. 7). 

(b) Represent the strain ellipsoid orientation on a 
stereographic projection with A~ (X) vertical, A2 (Y) 
N-S and A 3 (Z) E-W. Draw the great circle for the 
sectional ellipse in question (heavy broken curve). Label 
the principal-plane intersections A, B, C (triangles). 
Draw the two circular sections at angle 0 to A1, intersect- 
ing in A2 (broken curves); label the intersections on the 
sectional-ellipse plane D, E (circles). Bisect angle / 'DE 
to obtain the two principal axes of the sectional ellipse, 
labelling P1 the apparent extension (star) and P2 the 
shortening (diamond). (This is the Biot-Fresnel con- 
struction: see, e.g. Gay 1967, p. 216.) 

(c) Plot A, B and C on the principal Mohr circles by 
direct compass measurement. Plot D and E; one ~b angle 
will locate each on the A' = A~ ordinate. Plot Pl and P2 
by the circular-arc method described (see Fig. 3); two 4} 
angles are necessary, three ensure accuracy. Construct a 
smooth locus through points A-E  such that it touches 
the three principal circles once (A, B, C) and 'turns' at 
P1 and P2, the maximum and minimum A' values (the 
extreme left and right points, respectively). Identify any 
particular section of uncertainty in the locus, and choose 
additional lines, as appropriate, constructing their pos- 
itions from (b) to (c) as for P1 and P2. 

(d) Construct the Mohr circle for the sectional ellipse, 
on principal axes P~ and P2. It should be tangent to the 
Mohr locus at one point. The relationship between 
Mohr loci and their circles is examined below. 

The relationship between the Mohr locus and Mohr circle 
for a sectional ellipse 

The locus of a sectional ellipse, constructed as 
described above, represents a graph of A' vs 7' in three 
dimensions for the plane of the sectional ellipse. Any 
ellipse can be represented by a Mohr circle, the graph of 
A' vs 3'IE, where 3'1t here denotes the component of shear 
strain parallel to the plane of the sectional ellipse (Fig. 
10a). For any line in the plane, 711 is the shear strain of an 
initially perpendicular line in that plane, whereas Yr is 
the shear strain of its initially perpendicular plane. The 
difference is worth emphasizing because shear strain is 
commonly described in two-dimensional terms (i.e. 3'11) 
in structural-geology texts and also because the distinc- 
tion between ~ and HI is fundamental to the application 
of Mohr loci to structural problems described in this 
paper. 

The relationship of the Mohr locus to the Mohr circle 
for a sectional ellipse is illustrated in Fig. 9 (d). The locus 
is transferred on ordinate tracks to become a circle with 

principal axes P~ and P2. This 'transfer' effectively 
removes the component of shear strain not parallel to 
the plane of the ellipse. All points on the locus (e.g. A, 
B, C) transfer to the circle, where their angular relation- 
ships are measurable in the usual Mohr-circle manner. 
The Mohr circle and Mohr locus touch at a single point 
which is the direction in the sectional ellipse where 
YT = 7t[" (Coincidentally, in Fig. 9(d) this approximates 
to point D, a circular-section intersection.) 

The ~ r great circle for a sectional ellipse 

The Mohr locus for a sectional ellipse plane, con- 
structed as described above, is a graph ofA' vs total shear 
strain, ~ ,  for the section. The direction of ~ for any line 
in the section plane is not represented on the Mohr 
diagram. The following construction allows the direction 
of y+ or qJX to be determined. 

The values of two angular shear components are 
known from the Mohr locus and its Mohr circle, toT and 
Srl (Fig. 10a). Consider the two toT angles for the princi- 
pal directions, Pt and P2, in the section plane. For these, 
4111 = 0, which means that the angular shears for the 
tangent planes to PI and P2 are measured perpendicular 
to the section plane (Fig. 10b). Their intersection N', 
locates the deformed initial normal to the section plane: 
this would be the relative position of a deformed initially 
perpendicular marker. Thus, ZNNo may be termed the 
polar shear, or to_max (Fig. 10c). The great circle perpen- 
dicular to No is, here, called the @x great circle. It allows 
the directions and values of tot to be measured for any 
line in the section (Fig. 10c: points refer to Fig. 9), by a 
simple projection 'triangle' method. This, essentially, 
resolves the angular shear into three components which 
form a right-angled 'triangle' on the stereonet (Fig. 
10d): @]1 is measured (from the Mohr circle) on the net 
perimeter, ~0± on the net radius until it intersects the toT 
great circle; the directions of toT for each line are given 
by arrows on the 'triangle hypotenuse'. 

The relationship between tkT, toll and to± for any line 
has been expressed graphically in Fig. 10. In terms of 
algebra, the relationships are found to be 

COS toT --~ COS toil 'COS t o l ;  
"~ 2 2 2 2 Y~ 711 + 7± +Yll 7J- and similarly for y'; 

~ 2 2 
Y ~_max ~Vl q'- ]/P2' 

Two principles are illustrated in Fig. 10 which have 
practical implications. (i) The ¢,± great circle may be 
constructed for any sectional ellipse from two ¢'T points: 
P~ and P2 are simplest in practice because their toT 
directions are known. (ii) The tOT great circle can be 
constructed if the polar shear for the ellipse (4'±max) and 
its direction (Q) are known. These will define No, the 
pole to the @T great-circle, thus allowing it to be drawn 
directly. 

The q~T great circle, defined by either method, is the 
key to many practical applications of Mohr loci to 
geological problems. Taking the reverse procedure from 
the Mohr locus construction described previously 
(Fig. 9), it allows a locus to be constructed from a Mohr 
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Fig. 10. (a) The Mohr locus and the Mohr circle from Fig. 9 showing angular shear components. Total angular shear @T is 
measured from the locus (broken lines) and 2D (section-plane-parallel) shear, @11, from the Mohr circle (solid lines). (b) 
Angular shear for the two principal directions in the section plane, P~ and P2, as measured in (a). The Lambert stereographic 
projection shows the section plane horizontal. The 'deformed' tangent planes to P I and P2 are broken curves, labelled [P l]' 
and [P2]': their intersection is the deformed original pole to the section plane, No. (c) Angle ZNNo is @±max, the polar shear 
in direction Q, at angle/3 to Pt. The great circle whose pole is No is called the &v great circle because it contains all @T values 
for the section plane. 'Triangles' (shaded) may be constructed for each labelled point on the Mohr locus in Fig. 9. The 
perimeter side of any projection 'triangle' records @11, the perpendicular side the component called 0±, and the 'hypotenuse' 
represents the angle and direction of total shear, @T (arrowed). (d) The 'triangle' for point E on a quarter projection, 
showing how the intersection of the @11 to ~l trajectory with the 4iT small circle falls on the @T great circle for the section plane. 

circle p r o v i d e d  the re  is some  data  add i t i ona l  to the  s t ra in  
el l ipse.  R e a d e r s  will a l r eady  be fami l ia r  wi th  the  use of  
the  M o h r  circle for  the  de r iva t ion  of  a s t ra in  el l ipse f rom 
pa r t i cu l a r  types  of  two-d imens iona l  data .  Just  as a single 
circle fits a pa r t i cu la r  set  of  da ta ,  a un ique  three-c i rc le  
M o h r  d i a g r a m  for the  s t ra in  e l l ipsoid  can be  f i t ted to a 
M o h r  locus.  The  fo l lowing prac t ica l  examples  i l lus t ra te  
some  po ten t i a l  app l i ca t ions  of  M o h r  loci to the  der i -  
va t ion  of  s t ra in  e l l ipsoids  in d e f o r m e d  rocks.  

PRACTICAL APPLICATIONS OF MOHR 
DIAGRAMS AND LOCI IN GEOLOGICAL STRAIN 

MEASUREMENTS 

T h r e e  examples  are  chosen  to i l lus t ra te  the  po ten t i a l  
of  the  M o h r  d i a g ra m to the  d e t e r m i n a t i o n  of  th ree-  
d imens iona l  s t rain.  E a c h  ' p r o b l e m '  is so lved  by  com- 
p le te ly  g raph ica l  m e a n s - - t h e  c o m b i n e d  use of  s te reo-  
graphic  p ro j ec t ions  and M o h r  d iagrams .  E x a m p l e s  1 and 
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3 are the situations treated algebraically in Ramsay 
(1967, pp. 142-149) and example 3 may also be solved by 
Owens' (1984) best-fit ellipsoid algorithm. 

Clearly, graphical methods cannot compete with 
algebraic or numerical formulae, on accuracy. The 
choice of graphical vs accurate methods will depend on 
the need, and kind of data. Data determined by mea- 
surement are already limited in accuracy so the applica- 
tion of sophisticated numerical methods only produces a 
false sense of precision. In this situation a Mohr diagram 
solution would probably be more suitable: it requires no 
hardware/software, might even be used in the field, and 
with some practice is simple and quick. Probably tla~: 
greatest advantage of the graphical solution is its physical 
representation of three-dimensional strain. By illustrat- 
ing the strain ellipsoid on a plane, the Mohr diagram 
should remove the stumbling block which has forced 
many structural geologists to consider only two-dimen- 
sional problems. 

Thus, it might be concluded that where exactness is 
not necessary, for single solutions or for a first approxi- 
mation, the Mohr diagram is an ideal method of strain 
determination from geological data. While the answer 
may be inaccurate in some cases, the chance of deriving 
complete nonsense is remote. 

Example 1: a strain ellipse and a known orientation of  
ellipsoid axes 

This example is common in geology. A single (non- 
principal) strain ellipse may be measured or computed 
(e.g. from 'spots', fossils) and the principal axes of the 
strain ellipsoid may be inferred from cleavage (A]A 2 or 
X Y  plane) and a stretching lineation in cleavage (AI or 
X). The Mohr diagram is particularly suited to this 
problem. The key to the answer is the determination of 
the circular sections of the ellipsoid. The example also 
illustrates a case where single angles (Fig. la) are more 
useful than the usual double-angle Mohr convention. 

For this example, a strain ellipse of axial ratio 1.5 has 
an orientation of ellipsoid axes (A1, A2, A3) as shown in 
Fig. 1 l(a). Following the earlier formulation, the princi- 
pal axes are labelled P~, P2 and the principal-plane 
intersections A, B, C. Using the Biot-Fresnel construc- 
tion in reverse, a pair of circular sections may be con- 
structed (to intersect at A2) by trial-and-error. Only one 
pair exists for which Px and P2 are the bisectors of the two 
circular-section intersections on the ellipse plane (D, E) 
(Fig. l lb) .  The construction of these olanes is the step to 
an easy solution. 

The next stage is to draw the Mohr circle (on a relative 
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Fig. 11. Example 1: a strain ellipse with axial ratio 1.5 and known orientation of ellipsoid principal axes. (a) Stereographic 
representation of the known ellipse, its principal axes Pl (relative extension) and P2 (relative shortening) and the principal 
plane intersections A, B, C, (symbols as Fig. 9). Angle /AA 3 is labelled 0A; /BAx 6~. (b) Trial-and-error construction of 
the two circular sections (solid) for which Px and P2 bisect intercept D-E (circles) in the sectional ellipse plane (reverse 
Biot-Fresnel construction: see also De Paor 1986). (c) Construction of the Mohr circle for the ellipse on a relative scale (nA', 
ny'): axial ratio R = 1.5 (i.e. Ap/Ap~ = 2). Points A-E are shown. The ordinate through D-E locates A~ (cross). (d) Angles 
0 A and 0 B constructed by the single-angle convention (cf. Figs. la and 3b). The intersections of the 0A and 0 B chords with the 
A~. and A~ ordinates (given in c) locate A and B in the 3D Mohr diagram (triangles). (e) The Mohr diagram for the strain 
ellipsoid satisfying the data. The A'IA ~ circle is drawn through B and A~, and the A~A~ circle through A and A~. The Mohr 

locus for the sectional ellipse in (c) is sketched approximately, for completeness. 
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scale) for the strain ellipse (Fig. 11c), and plot points 
A-E in the usual way. (Note that their positions rep- 
resent their A' values but their ordinate values are Yi not 
y+). Points D and E are important: they fall on the 
ordinate line which represents the circular sections, and 
thus determines A ~. A ~ is now known: it remains to locate 
A~ and A~. Recall the single-angle Mohr circle convention 
(Figs. la and 3b) where angles to a principal axis are 
measured on chords from the diametrically opposite 
axis. Two angles may be measured on chords from 
~: 0A, the angle ZAA~ on the A~A~ circle and 0B, the 
angle ZBA~ on the A~A'2 circle, labelled in Fig. 11(a). 
These chords are constructed in Fig. 11(d). The intersec- 
tion of the 0A chord with the A ordinate (given on the 
Mohr circle, Fig. 11c) locates A on the (3D) Mohr 
diagram. B is located likewise. 

The position of A, together with At, allows the A~A~ 
principal circle to be drawn. The A;At circle is similarly 
constructed through A~ and B. The A~A~ circle is now 
obvious, and the three-circle Mohr diagram for the 
strain ellipsoid complete (Fig. l le) .  Absolute values 
may be given to AI, At and A~ from the relative scale in 
Fig. l l (e)  if equal volume (A'I'A~.A~ = 1) is assumed. 
The present example reveals a strain ellipsoid with 

X = 1.37, Y = 1.14 and Z = 0.64. (X----- )t~ -1/2, 

Y = At -m, Z = A;-v2). 
The solution in this example, unlike the following 

two, is not dependent on the construction of a Mohr 
locus for the strain ellipse. However, the locus is shown 
approximately in Fig. l l (e)  for completeness. 

Example 2: a bedding-plane strain ellipse and bedding- 
normal shear strain 

This is the situation in which a strain ellipse can be 
measured or computed on a bedding plane and the 
angular shear normal to bedding is measurable. For 
example, there may be distorted fossils on a bedding 
plane and deformed burrows or worm tubes initially 
normal to bedding. In terms of the preceding account, 
the data is thus a bedding plane sectional ellipse (Mohr 
circle) and its polar shear value, ~b.m,x, and direction (Q) 
(cf. Fig. 10). The data are insensitive to bedding com- 
paction strain, assumed to be zero in this example. 

The present example considers the case of a strain 
ellipse with axial ratio 1.5, and polar shear ~bLma x = 20 ° 
at 30 ° to the principal ellipse extension, P1. The method 
is as follows. First draw the Mohr circle for the ellipse on 
a relative scale (Fig. 12a) marking the polar shear direc- 
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Fig. 12. Example 2: a bedding plane strain ellipse of axial ratio 1.5 and a polar shear strain of 20 ° at 30 ° to the ellipse 
extension. (a) The Mohr  circle for the strain ellipse on a relative scale. Q is the azimuth of the polar shear strain (/3 = 30°). 
~bll is measured for Q and other  selected points (U,  V, W). (b) Stereographic representat ion of the strain ellipse (horizontal),  
following Fig. 10. The polar shear (0±max) determines No (the deformed initial pole to the ellipse plane) which is the pole to 
the qJT plane, qJ ' triangles'  are constructed for Q, U, V, W from their t~l I values in (a); arrowheads denote the values and 
orientations of 0x for each, to be plotted in (c). (c) Construction of the points on the Mohr  diagram and their relationship 
to the Mohr  circle. The Mohr  locus is drawn (broken crescent). (d) Three principal Mohr  circles are fitted to the Mohr  locus, 
each one touching the locus once. Two principal intersections (A, B) are used to construct the orientat ion of A1, A2 and 

A3 (stars) in (e) with respect to the (horizontal) sectional ellipse. 
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tion Q. Measure the ellipse-parallel shear component 
(qJll) for Q, from the Mohr circle. Now, represent the 
ellipse stereographically, as the horizontal plane. 0~_max 
is represented by the angle Z NNo, azimuth Q. The plane 
perpendicular to N" is the Ox locus plane: this will be 
used, together with the ~1 values measured in (a) (e.g. 
Q) to determine OT values, as shown in Fig. 10. The 0T 
values for a series of points on the ellipse plane will allow 
the Mohr locus to be constructed. Figure 12(b) shows 
the 0T values for selected lines: P1 and P2 where 011= 0; 
Q, T, U and V (chosen), by the projection 'triangle' 
method described previously. The Ov angles are care- 
fully measured in Fig. 12(b) and transferred to a Mohr 
diagram (Fig. 12c). Six points on the Mohr locus are thus 
determined; more may be constructed if necessary. The 
Mohr locus for the sectional ellipse is smoothly drawn 
through these points (Fig. 12c). It must touch its Mohr 
circle at a single point, and be such that P1 is its most 
leftward point and P2 its most rightward. 

In a perfect example, there is only one set of principal 
Mohr circles (on A{, A~, A~) which will completely enclose 
the Mohr locus. In practice, this is found by trial-and- 
error which may require finding the best imperfect fit 
(Fig. 12d). Each circle should touch the locus once (A, 
B, C); these three principal-plane intersections allow the 
orientation of the principal axes to be determined, and 
constructed (Fig. 12e); (refer back to Fig. 9). 

The strain ellipsoid and its orientation to the bedding- 
plane ellipse are thus derived, entirely graphically. As 
for example 1, values may be given to X, Y and Z 
assuming an equal-volume strain ellipsoid. In the pres- 
ent example X = 1.34, Y = 1.01 and Z = 0.74. 

E x a m p l e  3: three sectional strain ellipses 

This last example is chosen because it is a common 
geological situation, and one for which algebraic or 
numerical methods are generally used (Ramsay 1967, 
pp. 142-148, Milton 1980, Ramsay & Huber 1983, 
p. 198, Owens 1984). The method described below is 
entirely graphical, as also is De Paor's (1986) method by 
orthographic projection. 

The geological data is in the form of three strain 
ellipses of known axial ratio and orientation, on three 
planes of known mutual orientation. These strain 
ellipses may have been derived by direct measurement 
on bedding/joint planes in the field, measured on sec- 
tioned rock specimens or computed on section planes by 
methods such as Fry's (1979). The three section planes 
will be called xy ,  y z  and x z  where x, y and z are their 
mutual intersections, the section axes. The present 
example considers the case of three mutually perpen- 
dicular section planes, but the method is applicable to 
any three section planes. 

Represent the three sectional ellipse planes stereo- 
graphically (Fig. 13a) labelling the principal extensions, 
Px, and shortenings, P2. It is convenient to construct one 
section plane horizontally with a section axis N-S; the 
other planes are then oriented accordingly. In this 

example x z  is the horizontal plane and x y  and y z  are 
vertical. Construct the Mohr circles for the three sec- 
tional ellipses on any suitable scale (Fig. 13b), and mark 
the section axes x, y, z on each; they are diagonals in this 
orthogonal case. The example in Fig..13 has ellipse 
strain ratios of 1.38, 1.85 and 1.37 on the xy ,  y z  and x z  

planes, respectively. The three Mohr circles in Fig. 13(b) 
can only be used for angular measurements, because 
their absolute scales are not represented. It is possible, 
by altering the scaling of each circle, to construct the 
three circles on the same scale, such that A~ is the same 
for x on the x y  and x z  circles, (similarly Ay and hl) (Fig. 
13c). However, this is laborious and not necessary for 
the final solution. 

On each Mohr circle in Fig. 13 (b), measure two values 
of angular shear (~11) for the x, y and z axes. The 
nomenclature is given as such: G(xy) refers to the angular 
shear for x parallel to the xy  plane. The six measured 
angles a r e  ~tx(xy), l@(xy), i/Jy(yz) , ~/z(yz), I/Jx(xz) and G(xz). Their 
significance is shown in Fig. 13(d) and their values allow 
three planes to be drawn which represent the strain 
ellipsoid tangent planes at x, y and z. The tangent plane 
for x is labelled [_l_x]' (i.e. the deformed plane originally 
perpendicular to x); the total angular shear for x (~0x) is 
given by the angle between x and the pole to [ Ix] '  (see 
Fig. 5). The total angular shears for x, y and z are thus 
derived, arrowed in Fig. 13(d). 

The three values for total shear (6T) for x, y and z 
provide sufficient data for constructing a 0T great-circle 
for each (or all) of the sectional-ellipse planes. The qJT 
plane is drawn in Fig. 13(e) for the x z  (horizontal) plane, 
through the Ox and 4tz arrowheads. Recall that a 0Tplane 
provides the data for converting a Mohr circle to a Mohr 
locus on the (3D) Mohr diagram (see Fig. 10 and 
example 2). Figure 13(f) shows a series of Mohr locus 
points transferred from their x z  Mohr circle positions, 
according to their values of 0T derived in Fig. 13(e). 
Points x, z, P1 and P2 can be simply located, but certain 
additional points (T, U, V, W) must be selected and qJ 
triangles (shaded in Fig. 13e) constructed as described 
previously. A Mohr locus is constructed for the x z  

sectional ellipse through the eight points in Fig. 13(f); 
see earlier discussion of Mohr loci construction, and 
number of points needed. 

There should only be one set of principal Mohr circles 
(defining the strain ellipsoid) which can be fitted to an 
accurate Mohr locus. In practice, a best-fit ellipsoid must 
be sought for the x z  locus in Fig. 13(f); this is constructed 
in Fig. 13 (g). On the assumption A{.A~-A~ = 1, the 
strain ellipsoid in Fig. 13(g) has axial ratios X = 1.4, 
Y = 1 and Z = 0.7. The three tangent points of the 
Mohr locus to the principal circles (A, B and C) allow the 
orientations of A1, ,It 2 and A 3 (X,  Y, Z) to be constructed 
with respect to the x z  plane, as described previously. 
The solution is shown in Fig. 13 (h). 

A solution for the strain ellipsoid fitting the strain data 
on three section planes could have been derived from 
the Mohr locus construction of each of the section 
planes. Ideally, the ellipsoid should be the same 
although the shape of each locus will be different. In 
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Fig. 13. Example 3: strain measurement  on three mutually perpendicular planes. (a) Three sectional ellipse planes xy ,  y z  

and x z ,  their section axes x, y and z and their principal elongations (P l) and shortenings (P2). (b) The three Mohr  circles and 
six shear angles: scale unimportant .  (c) The three Mohr  circles constructed on a compatible relative scale so that their ;t'x, ,~ 
and A'z values are in common (arrowed). This diagram is not necessary to the solution. (d) The six shear angles measured in 
(b) represented on a stereographic construction. They allow the ellipsoid tangent  planes to x, y and z to be constructed 
([±x] ' ,  etc.) and thus the total shear angles for x, y and z to be represented (heavy arrows: q&, q,y and ~0z). (e) For the 
horizontal x z  plane the q'T great circle is constructed from ~Ox and ~O z (cf. Fig. 10). (f) The x z  Mohr circle is drawn, a series of 
points defined (T, U,  V, W), and their ~011 angles measured. Their  qJT angles are determined from the construction of 
' triangles'  in (e). Each q~r value (arrowed) is plotted on the Mohr  diagram, (f), to construct the x z  Mohr locus. (g) As in 
example 2, three principal Mohr  circles are fitted to the locus. Tangent  points A, B, C, allow/t],  )t 2 and )t 3 (stars) to be 

constructed relative to x, y and z, in (h). 
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practice, three ellipse sections might not fit one common 
ellipsoid: see De Paor (1986) for a discussion of closing 
errors. 

This final example demonstrates the potential of the 
Mohr diagram, and particularly the power of Mohr loci, 
for the derivation of strain ellipsoids from data hitherto 
analysed algebraically or by computer. Although less 
accurate than these, the Mohr diagram provides an 
entirely graphical method which is straightforward, 
immediate and cheap; it is particularly suited for a 'first 
try' of data. A direction for future research might be in 
minimizing the element of human error inherent in 
graph drawing and angle measurement by using a com- 
puter to construct Mohr diagrams, Mohr loci and 
stereographic projections. The visual advantages of the 
Mohr diagram would thus be combined with the greater 
exactness of computer methods. 

CONCLUSIONS 

An investigation of the Mohr diagram for three- 
dimensional strain has revealed considerable potential 
to structural geology. A three-circle Mohr diagram for a 
strain ellipsoid provides a simple immediate method of 
ellipsoid classification according to its k type. However, 
the area of greatest potential is probably in the represen- 
tation of sectional ellipses as Mohr loci. These loci 
provide a link between two-dimensional strain of Mohr 
circles and the three-dimensional Mohr diagram. The 
selected examples illustrate the power of the Mohr 
diagram and Mohr loci to solving problems of three- 
dimensional strain by graphical means. 
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